Jumat, 27 April 2012

Komponen Mesin Diesel


      
berbicara tentang komponen mesin dieseil (bagian-bagian mesin diesel) merupakan Suatu pemahaman dari operasi atau kegunaan berbagai bagian berguna untuk pemahamam sepenuhnya dari seluruh mesin diesel. Setiap bagian atau unit mempunyai fungsi khusus masing-masing yang harus dilakukan dan bekerja sama dengan bagian yang lain membentuk mesin diesel. Orang yang ingin mengoperasikan, memperbaiki atau menservis mesin disel, harus mampu mengenal bagian yang berbeda dengan pandangan dan mengetahui apa fungsi kusus masing-masing. Pengetahuan tentang bagian-bagian mesin diesel akan diperoleh sedikit demi sedikit, pertama kali dengan membaca secara penuh perhatian yang berikut, dan kemudian dengan melihat daftar istilah pada akhir buku ini setiap istilah yang belum dapat anda mengerti.

secara garis besar bagian mesin diesel ada 9, yaitu sebagai berikut :
  1. silinder mesin diesel
  2. kepala silinder mesin diesel
  3. katup pemasukan dan katup buang mesin diesel.
  4. torak batang engkol mesin diesel
  5. poros engkol mesin diesel
  6. Roda gila mesin diesel
  7. Poros nok mesin diesel
  8. Karter mesin diesel.
  9. Sistem bahan bakar  mesin diesel

1. Silinder mesin diesel
Jantung mesin diesel adalah silindernya, yaitu tempat bahan bakar dibakar dan daya ditimbulkan. Bagian dalam silinder mesin diesel dibentuk dengan lapisan (liner) atau selongsong (sleeve).Diameter dalam silinder disebut lubang( bore)

2. Kepala silinder (cylinder head) mesin diesel
Menutup satu ujung silinder dan sering berisikan katup tempat udara dan bahan bakar diisikan dan gas buang dikeluarkan.

3. Torak (piston) mesin diesel
Ujung lain dari ruang kerja silinder ditutup oleh torak yang meneruskan kepada poros daya yang ditimbulkanoleh pembakaran bahan bakar. Cincin torak (piston ring) mesin diesel yang dilumasi dengan minyak mesin menghasilkan sil( seal) rapat gas antara torak dan lapisan silinder. Jarak perjalanan torak dari
ujung silinder ke ujung yang lain disebut langkah (stroke)

4. Batang Engkol (Connecting rod) mesin diesel
Satu ujung, yang disebut ujung kecil dari batang engkol, dipasangkan kepada pena pergelangan (wrist pin) atau pena tora (piston pin) yang terletak didalam torak. Ujung yang lain atau ujung besar mempunyai bantalan untuk pen engkol. Batang engkol mengubah dan meneruskan gerak ulak-alik (reciprocating) dari torak menjadi putaran kontinu pena engkol selama langkah kerja dan sebaliknya selama langkah yang lain.

5. Poros engkol (crankshaft) mesin diesel
Poros engkol berputar dibawah aksi torak melalui batang engkol dan pena engkol yang terletak diantara pipi engkol( crankweb ), dan meneruskan daya dari torak kepada poros yang digerakkan. Bagian dari poros engkol yang di dukung oleh bantalan utama dan berputar didalamya di sebut tap (journal).

6. Roda Gila ( Flywheel ) mesin diesel
Dengan berat yang cukup dikuncikan kepada poros engkol dan menyimpan energi kinetik selama langkah daya dan mengembalikanya selama langkah yang lain. Roda gila membantu menstart mesin dan juga bertugas membuat putaran poros engkol kira-kira seragam.

7. Poros Nok (Camshaft) mesin diesel
Yang digerakkan oleh poros engkol oleh penggerak rantai atau oleh roda gigi pengatur waktu mengoperasikan katup pemasukan dan katup buang melalui nok, pengikut nok, batang dorong dan lengan ayun. Pegas katup berfungsi menutup katup.

8. Karter (crankcase) mesin diesel
Berfungsi menyatukan silinder, torak dan poros engkol,melindungi semua bagian yang bergerak dan bantalanya dan merupakan reservoir bagi minyak pelumas. Disebut sebuah blok silinder kalau lapisan silinder disisipkan didalamya. Bagian bawah dari karter disebut plat landasan.

9. Sistem Bahan Bakar mesin diesel
Bahan bakar dimasukan kedalam ruang bakar oleh sistem injeksi yang terdiri atas. saluran bahan bakar, dan injektor yang juga disebut nosel injeksi bahan bakar atau nosel semprot


Sistem Mesin Diesel

Sistem Pendukung Mesin
engineMesin secara umum memerlukan sistem pendukung agar dapat beroperasi dengan baik dan tanpa mengalami gangguan yang berarti dan tiap unit bagian mesin harus mendapat perawatan secara simultan dan continue. Secara umum sistem pendukung pada mesin tersebut dibagi menjadi 5 bagian utama, yaitu:
1.     Pelumasan (Lubrication)
2.     Injeksi Bahan Bakar (Fuel Injection)
3.     Pendinginan (Cooling)
4.     Asupan Udara (Air Intake)
5.     Saluran Buang (Exhaust)
Sistem Pelumasan Mesin
Mesin pembakaran dalam (internal combustion) tidak dapat berjalan jika bagian-bagian yang bergerak yang terdiri dari logam-logam diperbolehkan saling kontak tanpa lapisan pelumas. Panas yang dihasilkan luar biasa karena jumlah gesekan akan mencairkan logam, menuju kehancuran mesin.
lubricantUntuk mencegah hal ini, semua bagian mesin yang bergerak harus dilapisi minyak pelumas yang dipompa ke semua bagian mesin yang bergerak.
Umumnya pelumas mesin menggunakan olie yang kekentalannya (viskositas) menggunakan satuan SAE, fungsi dari pelumas tersebut adalah untuk mengurangi gesekan dan getaran antar bagian-bagian yang bergerak, melindungi mesin dari keausan, menyerap panas dan gesekan yang dihasilkan oleh bantalan mesin yang bergerak.
Untuk memastikan agar bagian-bagian mesin yang bergerak terlumasi dengan baik maka perawatan dan pengecekan rutin (schedule) perlu dilakukan agar sirkulasi pelumasan mesin tidak terhambat dan tersumbat. Minyak pelumas ditampung dan disimpan di bak olie (oil carter) dimana telah terdapat satu atau lebih pompa oli, pompa melalui pipa menghisap olie dari bak oli dan memompanya ke saluran-saluran pembagi setelah terlebih dahulu melewati filter olie dan pendingin olie.
Dari saluran-saluran pembagi, minyak pelumas yang telah didinginkan tersebut disalurkan untuk melumasi permukaan bantalan, poros engkol, roda gigi, silinder, pegas dan bagian yang bergerak lainnya. Minyak pelumas yang mengalir dari tempat-tempat pelumasan kemudian kembali ke dalam bak olie lagi melalui saluran kembali dan kemudian dihisap oleh pompa olie untuk disalurkan kembali dan begitu seterusnya.
Sistem Bahan Bakar Mesin
http://jonpurba.files.wordpress.com/2010/02/fuel-injector.jpg?w=510Semua mesin diesel memerlukan sebuah metode penyimpanan dan penyampaian bahan bakar ke mesin. Karena mesin diesel mengandalkan injector yang komponennya sangat presisi dengan toleransi sangat ketat dan sangat kecil lubang injeksinya, bahan bakar dikirim ke mesin harus sangat bersih dan bebas dari kontaminan. Keharusan sistem bahan bakar tidak hanya menyampaikan bahan bakar, tetapi juga menjamin kebersihan bahan bakar tersebut.
Hal ini biasanya dilakukan melalui serangkaian filter in-line. Umumnya, bahan bakar akan disaring lebih dulu di luar mesin dan bahan bakar akan melalui setidaknya satu lagi filter internal mesin, biasanya terletak di garis setiap injektor bahan bakar. Dalam mesin diesel, sistem bahan bakar jauh lebih kompleks dari pada sistem bahan bakar mesin bensin yang lebih sederhana karena bahan bakar mesin diesel yang melayani dua tujuan. Satu tujuan yang jelas adalah sebagai pemasok bahan bakar untuk menjalankan mesin dan yang lainnya bertindak sebagai pendingin injector.
Untuk memenuhi tujuan kedua ini, bahan bakar terus menerus mengalir melalui sistem bahan bakar mesin (engine’s fuel system) dengan laju aliran yang jauh lebih tinggi dari yang dibutuhkan untuk hanya menjalankan mesin, contoh saluran bahan bakar ditunjukkan pada gambar. Bahan bakar yang berlebih disalurkan kembali ke pompa bahan bakar (fuel pump) atau tangki penyimpanan tergantung pada aplikasi sistem bahan bakar.
Sistem Pendinginan Mesin
radiatorHampir semua mesin diesel mengandalkan sistem pendingin cair untuk mentransfer panas keluar dari blok dan dari dalam mesin seperti yang ditunjukkan pada Gambar. Sistem pendingin terdiri dari loop tertutup yang hampir sama dengan mesin-mesin mobil dan mengandung komponen-komponen utama seperti: pompa air (water pump), radiator (heat exchanger), termostat, jaket air yang terdiri dari bagian-bagian pendingin di blok dan kepala silinder (cylinder head).
Hanya sebagian dari energi yang terkandung dalam bahan bakar yang diberikan pada mesin dapat diubah menjadi tenaga mekanik sedang sebagian lagi tersisa sebagai panas. Panas yang tersisa tersebut akan diserap oleh bahan pendingin yang ada pada dinding-dinding bagian blok silinder yang membentuk ruang pembakaran, demikian pula bagian-bagian dari kepala silinder didinginkan dengan air. Sedangkan untuk piston didinginkan dengan minyak pelumas dan panas yang diresap oleh minyak pelumas itu kemudian disalurkan melewati pendingin minyak.
Sistem Asupan Udara
air-intakeKarena mesin diesel memerlukan toleransi ketat untuk mencapai rasio kompresi dan karena kebanyakan mesin diesel baik turbo diesel (turbocharging or supercharging), mengasup udara yang masuk ke mesin harus bersih, bebas dari kotoran dan sedingin mungkin. Untuk meningkatkan efesiensi turbocharged atau supercharged mesin, udara terkompresi harus didinginkan setelah dikompresi. Sistem asupan udara (air intake system) dirancang untuk melaksanakan tugas ini (turbocharging dan supercharging dibahas kemudian).
Sistem asupan udara bervariasi tapi biasanya salah satu dari dua jenis, basah atau kering.Dalam sistem asupan filter basah, seperti yang ditunjukkan pada gambar, udara dihisap atau digelembungkan melalui rumah filter yang mengandung minyak sehingga kotoran dalam udara dihilangkan dengan minyak dalam proses penyaring. Udara kemudian mengalir melalui sebuah bahan screentip untuk memastikan setiap minyak yang terbawa dipisahkan dari udara.
Dalam sistem filter kering, kertas, kain atau bahan screen logam digunakan untuk menangkap dan menjebak kotoran sebelum memasuki mesin, mirip dengan tipe yang digunakan dalam mesin mobil. Selain membersihkan udara, sistem asupan udara biasanya didesain untuk mengasup udara segar sejauh mungkin dari mesin, biasanya dari luar ruangan mesin, agar pasokan udara untuk asupan mesin belum terpanaskan oleh panas dari mesin itu sendiri.Alasan untuk memastikan agar suplai udara sedingin mungkin adalah karena udara dingin lebih padat dari pada udara panas.
Ini artinya bahwa persatuan volume udara sejuk memiliki lebih banyak oksigen dari pada udara panas. Dengan demikian udara sejuk memberikan lebih banyak oksigen untuk tiap silinder dari pada udara panas. Lebih banyak oksigen berakibat pembakaran bahan bakar lebih efisien dan lebih bertenaga.
Setelah disaring, udara disalurkan oleh sistem asupan ke intake manifold mesin atau kotak udara. Manifold atau kotak udara adalah komponen yang mengarahkan udara segar ke masing-masing katup isap mesin. Jika mesin turbocharge atau supercharge, udara segar akan dikompresi dengan blower dan mungkin didinginkan sebelum memasuki saluran udara masuk (intake manifold). Sistem asupan juga berfungsi untuk mengurangi kebisingan aliran udara.
Turbocharger
turboTurbocharging sebuah mesin terjadi ketika gas-gas buang mesin dipaksa melalui turbin atau impeller yang berputar dan terhubung dengan impeller kedua yang terletak di sistem asupan udara segar. Impeler di sistem asupan udara segar memampatkan udara segar.
Udara terkompresi melayani dua fungsi:
Fungsi Pertama, meningkatkan daya tersedia mesin dengan meningkatkan jumlah maksimum oksigen yang dipaksa masuk ke dalam setiap silinder. Hal ini memungkinkan jika lebih banyak bahan bakar diinjeksikan sehingga lebih besar tenaga yang diproduksi oleh mesin. Fungsi Kedua adalah untuk meningkatkan tekanan asupan. Hal ini meningkatkan pembilasan terhadap gas buang keluar dari silinder.
Turbocharging umumnya ditemukan pada mesin empat langkah berdaya tinggi. Ini juga dapat digunakan pada mesin dua tak di mana peningkatan tekanan asupan yang dihasilkan oleh turbocharger diperlukan untuk memaksa muatan udara segar ke dalam silinder dan membantu menekan gas buang keluar dari silinder.
Supercharger
Supercharging mesin melakukan fungsi yang sama dengan turbocharging mesin. Perbedaannya hanya pada sumber daya yang digunakan untuk menggerakkan perangkat yang memampatkan udara segar masuk. Dalam sebuah mesin supercharger, udara biasanya dikompresi di dalam alat yang disebut blower.
Blower digerakkan langsung melalui roda gigi dari crankshaft mesin. Jenis yang paling umum dari blower menggunakan dua rotor berputar untuk menekan udara. Supercharging lebih umum ditemukan di mesin dua langkah di mana tekanan yang lebih tinggi dari supercharger mampu menghasilkan sesuai dengan yang diperlukan.
Sistem Pembuangan Mesin
exhaust
Sistem pembuangan mesin diesel melakukan tiga fungsi: Pertama, saluran sistem pembuangan yang melewatkan gas-gas pembakaran dari mesin, di mana mereka ditipiskan oleh atmosfer setelah sebelumnya dicampur dengan air. Hal ini dilakukan didaerah sekitar mesin ditempatkan. Kedua, batas sistem pembuangan dan saluran gas-gas ke turbocharger, jika digunakan. Ketiga, sistem pembuangan yang memberikan peredaman knalpot (muffler) digunakan untuk mengurangi kebisingan mesin.
KONSTRUKSI KAMAR MESIN KAPAL
0
Kamar mesin adalah kompartemen yang sangat penting pada sebuah kapal. Di tempat inilah terdapat mesin penggerak kapal yang biasanya dinamakan mesin induk atau mesin utama. Di kamar mesin pula terletaksumber tenaga untuk membangkitkan listrik yang berupa generator listrik kapal, pompa-pompa, dan bermacam-macam peralatan kerja yang menunjangpengoperasian kapal. Konstruksi kamar mesin dibuat khusus karena adanya beban-beban tambahan yang bersifat tetap, seperti berputarnya mesin utama dan mesin lainnya.Situasi umum di dalam kamar mesin dapat dilihat pada Gambar 1. Pada Gambar ini dapat dilihat mesin utama menggerakkan baling-baling tunggal.
KAMAR MESIN KAPAL KONSTRUKSI KAMAR MESIN KAPAL
Untuk poros antara yang melalui ruang muat, dibuat terowongan poros baling-baling di bagian bawah ruang muat. Selain itu ada lagi tipe kapal yang mempunyai kamar mesin langsung di belakang, maksudnya tanpa ruang palka di antara kamar mesin dengan ceruk buritan. Kamar mesin di tengah jarang sekali digunakan. Untuk kamar mesin di belakang dapat dilihat pada Gambar 2.
KONTRUKSI KAPAL KONSTRUKSI KAMAR MESIN KAPAL
Kamar mesin pada kapal-kapal besar biasanya lebih dari dua lantai. Pada lantai pertama atau lantai alas dalam terletak mesin utama dan pada lantai kedua terletak generator pembangkit tenaga listrik. Jumlah generator lebih dari satu, dan umumnya dua atau tiga. Hal tersebut dimaksudkan sebagai cadangan, jika salah satu generatornya rusak atau sedang dalam perbaikan.
Pada Gambar 3 diperlihatkan pandangan atas dari sebuah kamar mesin. Di sini dapat dilihat bahwa mesin utama terletak tepat pada bidang simetri kapal dan tiga buah generator listrik terletak pada lantai yang sama.
PANDANGAN MESIN KAPAL KONSTRUKSI KAMAR MESIN KAPAL
Gambar pandangan atas kamar mesin dibuat berdasarkan pandanganatas dari lantai kamar mesin dan dinamakan gambar rencana tata letak kamar mesin.
Gambar-gambar lain yang lebih detail dari kamar mesin berpedoman pada gambar rencana tata letak kamar mesin, misalnya gambar fondasi mesin pompa-pompa, botol angin, keran-keran, dan sistem pipa pada kamar mesin.
A. Wrang pada Kamar Mesin
Wrang pada kamar mesin pada umumnya dipasang secara melintang.Ada kalanya di kamar mesin dipakai konstruksi dasar ganda. Hal tersebut mengingat ruang-ruang yang tersedia di antara wrang dapat dimanfaatkan sebagai tangki-tangki, seperti tangki bahan bakar dan minyak pelumas. Tetapi, dalam hal ini tidak berarti konstruksi alas tunggal sama sekali tidak dipakai. Di antara penumpu bujur fondasi mesin, modulus penampang Wrang alas boleh diperkecil sampai 40%. Tinggi pelat bilah wrang alas di sekitar fondasi mesin sedapat mungkin diperbesar, artinya tidak terlalu kecil jika dibandingkan dengan tinggi wrang. Tinggi wrang alas yang disambung ke gading-gading sarang harus dibuat sama dengan tinggi penumpu bujur fondasi. Tebal pelat tegak wrang alas tidak boleh kurang dari :
t = h/100 + 4 (mm)
di mana :
h = 55 B – 45 (mm).
B = Lebar kapal (m).
h minimum = 180 mm.
Pada dasar ganda, lubang-lubang peringan di sekitar fondasi mesin dibuat sekecil mungkin. Bila lubang peringan ini berfungsi pula sebagai jalan masuk orang, harus diperhitungkan dengan besar badan orang rata-rata. Tepi lubang peringan sebaiknya diberi pelat hadap atau bidang pelatnya diperlebar dengan penguat – penguat, bila tinggi lubang peringan lebih besar dari ½ kali tinggi wrang. Dasar ganda dalam kamar mesin harus dipasang wrang alas penuh pada setiap gading-gading. Tebal wrang di kamar mesin diperkuat sebesar (3,6 + N/500)% dari wrang di ruang muat. minimal 5% maksimal 15% dan N adalah daya mesin (kW). Penumpu samping yang membujur di bawah pelat hadap fondasi yang dimasukkan kedalam alas dalam harus setebal penumpu bujur fondasi di atas alas dalam. Hal ini sesuai dengan Gambar 6.4 dan perhitungan fondasi. Di dalam dasar ganda di bawah penumpu bujur fondasi, dipasang penumpu samping setebal wrang alas yang diperkuat setinggi alas ganda sesuai denganperhitungan tebal pelat tegak wrang alas. Jika pada setiap sisi mesin ada dua penumpu bujur fondasi untuk mesin sampai 3.000 kW, salah satu penumpunsamping boleh dibuat setengah tinggi bawah alas dalam. Penumpu samping yang menjadi satu dengan penumpu bujur fondasi, pemasangannya harus diperpanjang dua sampai empat kali jarak gading melewati sekat ujung kamar mesin. Perpanjangan dua sampai empat kali tersebut dihubungkan dengan sistem konstruksi alas dari ruang yang berhubungan. Di antara dua penumpu bujur fondasi, alas dalam harus dipertebal 3 mm dari yang direncanakan. Ketebalan ini diteruskan tiga sampai lima kali jarak gading dari ujung-ujung fondasi mesin.
B. Fondasi Kamar Mesin
Fondasi kamar mesin merupakan suatu sarana pengikat agar mesin tersebut tetap tegak dan tegar pada posisi yang telah ditetapkan atau supaya mesin menjadi satu kesatuan dengan kapalnya sendiri. Pemasangan fondasi mesin dibuat sedemikian rupa sehingga kelurusan sumbu poros mesin dengan poros baling-baling tetap terjamin. Hubungan antara mesin utama, fondasi mesin, dan wrang.
Kekakuan fondasi mesin dan konstruksi dasar ganda di bawahnya harus mencukupi persyaratan. Hal ini dimaksudkan agar deformasi konstruksi masih dalam batas-batas yang diizinkan. Mulai dari tahap perencanaan dan pembuatan fondasi mesin harus dipikirkan penyaluran gaya-gayanya, baik kearah melintang maupun ke arah membujur kapal.
Ketebalan pelat penumpu bujur fondasi tidak boleh kurang dari :
t = N/15 + 6 (mm), untuk N < t =” N/750″ t =” N/1.875″ n =” Kapal” style=”text-align: justify;”> Jika pada setiap sisi motor dipasang dua penumpu bujur, tebal penumpu bujur tersebut dapat dikurangi 4 mm. Tebal dan lebar pelat hadap fondasi mesin harus disesuaikan dengan tinggi fondasi dan tipe mesin yang dipakai, sehingga pengikatan dan kedudukan mesin dapat dijamin sempurna. Tebal pelat hadap paling sedikit harus sama dengan diameter baut pas, penampang pelat hadap tidak boleh kurang dari :
F1 = N/15 + (30 cm2), untuk N 750 kW.
F1 = N/75 + 70 (cm2) N > 750 kW.
Penumpu bujur fondasi mesin harus ditumpu oleh wrang. Untuk pengikatan dengan las, pelat hadap dihubungkan dengan penumpu bujur dan penumpu lintang dengan kampuh K. Hal tersebut jika penumpu bujur lebih besar dari 15 mm.
C. Gading dan Senta di Kamar Mesin
Perencanaan dan pemasangan gading-gading di kamar mesin pada pokoknya sama dengan pemasangan pada bagian-bagian kapal lainnya. Jadi, untuk perhitungan gading-gading di kamar mesin masih menggunakan peraturan untuk gading-gading di ruang muat. Oleh karena kamar mesin merupakan tempat khusus yang mendapat beban tambahan, antara lain bangunan atas atau rumah konstruksi khusus yang dapat menyalurkan bebanbeban tersebut. Konstruksi tersebut berupa perbanyakan gading-gading besar atau sarang dan senta lambung. Gading-gading besar dipasang di kamar mesin dan ruang ketel, bila ada ruang ketel. Adapun pemasangannya ke atas sampai ke geladak menerus teratas. Jika tinggi sisi 4 m, jarak rata-rata gading besar adalah 3,5 m dan jika tinggi sisi 14 m, jarak rata-rata gading besar adalah 4,5 m. Gading-gading besar dipasang pada ujung depan dan ujung belakang mesin motor bakar, jika motor bakar mempunyai daya mesin sampai kira-kira 400 kW. Dan jika motor bakar berdaya kuda antara 400 – 1.500 kW, dipasang sebuah gading besar tambahan pada pertengahan panjang motor. Untuk tenaga yang lebih besar lagi dayanya, minimal ditambah 2 buah gading besar lagi.
Jika motor bakar dipasang di buritan kapal, harus dipasang senta di dalam kamar mesin, sejarak 2,6 m. Letak senta diusahakan segaris dengan senta di dalam ceruk buritan, jika ada, atau gading-gading besar tersebut harus diperkuat. Jika tinggi sampai geladak yang terendah kurang dari 4 m, minimum dipasang sebuah senta. Ukuran senta tersebut sama dengan ukuran gading besar. Untuk menentukan modulus penampang gading-gading besar, ukuran penampangnya tidak boleh kurang dari :
W = K 0,8 e I Ps (cm3),
Di mana :
e = Jarak antara gading besar (m).
I = Panjang yang tidak ditumpu (m).
Ps = beban pada sisi kapal (kN/m2).
Momen kelembaman atau momen inersia gading-gading besar tidakboleh kurang dari :
J = H (4,5 H – 3,75) c 102 (cm4), untuk 3 m H 10 m.
J = H (7,25 H – 31) c 102 (cm4), untuk H > 10 m.
c = 1 + (Hu – 4) 0,07
di mana :
Hu = Tinggi sampai geladak terbawah (m)
Adapun Pelat bila Gading – Gading besar dihitung dengan rumus sebagai berikut :
h = 50 H (mm), dengan h minimum = 250 mm.
t = h (mm), dengan t minimum = 8,0 mm.
Kapal-kapal dengan tinggi kurang dari 3 m harus mempunyai gadinggading besar dengan ukuran tidak boleh kurang dari 250 kali 8 mm dan luas penampang pelat hadapnya minimum 12 cm2.
D. Selubung Kamar Mesin
Dengan proses pembangunan kapal, sewaktu bangunan atas dan rumah geladak belum dipasang, mesin utama sudah harus dimasukkan. Untuk memasukkan mesin ke dalam kamar mesin, dibuat lubang khusus di atas kamar mesin yang berupa bukaan dan dinamakan selubung kamar mesin. Bukaan di atas kamar mesin dan kamar ketel tidak boleh lebih besar dari kebutuhan yang ada. Dan, kebutuhan di sekitar selubung tersebut harus diperhatikan cukup tidaknya komponen konstruksi melintang yang dipasang. Pada ujung-ujung harus dibundarkan dan jika perlu diberi penguatanpenguatan khusus. Potongan melintang kamar mesin dengan selubung.
Pada Gambar 4 dapat dilihat pandangan samping keseluruan kamar mesin, mulai dari dasar ganda sampai ke cerobong asap.
ISI KAMAR MESIN KONSTRUKSI KAMAR MESIN KAPAL
Menurut BKI, tinggi selubung diatas geladak / tidak boleh kurang dari 1,8 m, dengan catatan L tidak melebihi 75 m dan tidak kurang dari 2,3 m. Jika L sama dengan 125 m atau lebih, harga-harga diantaranya diperoleh interpolasi. Ukuran-ukuran penegar, tebal pelat dan penutup selubung yang terbuka sama dengan untuk sekat ujung bangunan atas dan untuk rumah geladak. Ketinggian selubung di atas geladak bangunan atas sedikitnya 760 mm, sedangkan ketebalan pelatnya boleh 0,5 mm lebih tebal dan perhitungan di atas dengan jarak penegar satu sama lain, yaitu 750 mm. Ketinggian bilah 75 mm dan ketebalan penegar harus sama dengan tebal pelat selubung. Pada selubung kamar mesin dan ketel yang berada di bawah geladak lambung timbul atau di dalam bangunan atas tertutup, tebal pelatnya harus 5 mm. Jika terletak di dalam ruang muat, tebalnya 6,5 mm. Pemasangan pelat ambang tersebut harus diteruskan sampai ke pinggir bawah balok geladak. Jika selubung kamar mesin diberi pintu, terutama di atas geladak terbuka dan di dalam bangunan atas yang terbuka, bahan pintu tersebut harus dibuat dari baja. Pintu tersebut harus diberi penguat dan engsel yang baik, dan dapat dibuka atau ditutup dari kedua sisi dan kedap cuaca dengan pengedap karet atau pasak putar. Persyaratan lain untuk pintu ini mempunyai tinggi ambang pintu 600 m di atas geladak posisi 1 (di atas geladak lambung timbul) dan 380 mm di atas geladak posisi 2 (di atas geladak bangunan atas). Pintu tersebut harus mempunyai kekuatan yang sama dengan dinding selubung tempat pintu dipasang.
E. Terowongan Poros
Pada kapal – kapal yang mempunyai kamar mesin tidak terletak di belakang, poros baling-baling akan melewati ruangan di belakang kamar mesin tersebut. Untuk melindungi poros baling – baling diperlukan suatu ruangan yang disebut Terowongan Poros (Shaft Tunnel). Terowongan poros dibuat kedap air dan membujur dari sekat belakang kamar mesin sampai sekat ceruk buritan. Ukuran terowongan harus cukup untuk dilewati orang. Hal ini supaya orang masih dapat memeriksa, memperbaiki, dan memeliharanya. Ada dua tipe terowongan poros yang sering digunakan, yaitu terowongan yang berbentuk melengkung dan yang berbentuk datar sisi atasnya. Dinding-dinding terowongan poros dibuat dari pelat dan diperkuat dengan penegar-penegar. Sesuai dengan ketentuan dari BKI, tebal dinding terowongan dibuat sama dengan tebal pelat kedap air dan ukuran penegar juga dibuat sama dengan prenegar sekat kedap air. Apabila dinding terowongan digunakan sebagai tangki, ukuran pelat dan penegar harus memenuhi persyaratan untuk dinding tangki. Tipe terowongan yang mempunyai atap melengkung mempunyai konstruksi yang lebih kuat dibandingkan dengan tipe terowongan datar, sehingga tebal pelat dapat dikurangi sampai 10% dari ketentuan. Penegar penegar atap dibuat mengikuti kelelengkungan atap dan disambung lurus dengan penegar dinding terowongan. Pada tipe terowongan poros atap datar, penegar-penegar dinding terowongan dengan pelat lutut. Jarak penegarpenegar trowongan poros pada umunnya dibuat sama dengan jarak gading atau wrang.
Pada bagian atas terowongan poros dapat pula dipasang papanpapan pelindung yang berguna untuk menahan kerusakan yang di akibatkan oleh muatan. Terowongan poros dapat juga dimanfaatkan untuk penempatan instalasi pipa. Pipa-pipa tersebut diletakkan di bawah tempat untuk berjalan di dalam terowongan poros. Di terowongan ini terdapat pula pintu kedap air, yaitu untuk menghubungkan terowongan dengan kamar mesin.
F. UKURAN KAMAR MESIN
  1. Panjang Kamar Mesin, Sebagai Dasar Pertimbangan Pemasangan Mesin Kapal Dan Perlengkapan Kapal Satu hal penting pada tahap awal perancangan adalah menentukan panjang kamar mesin, karena ukuran ini menentukan panjang kapal secara keseluruhan, yang selanjutnya juga mempengaruhi bentukkapal, performance, struktur dan sebagainya. Diluar pertimbangan kemudahan akses dan perawatan, panjang kamar mesin sebaiknya sependek mungkin, karena makin panjang kamar mesin, makin besar berat konstruksi, dan makin kecil kapasitas / ruang muat.
  2. Tinggi Kamar Mesin. Engine casing harus dibuat cukup tinggi untuk perawatan dan overhaul mesin induk secara priodik diadakan perawatan dan penggantian sehinggaperlu untuk di keluarkan, untuk keperluan pengeluaran piston ini dibutuhkanruang yang cukup atau tinggi engine casing harus cukup menunjang pekerjaan ini.
G. LAYOUT KAMAR MESIN
Seperti yang telah disebutkan dimuka bahwa sangat penting membuat layout perencanaan awal untuk menentukan akibat dari pemilihan tenaga penggerak terhadap konfigurasi atau susunan ruang untuk permesinan. Didalam buku peraturan Klasifikasi Indonesia Volume III untuk MachineryConstruction bagian satu B tentang Documents for approval menyatakan :
  1. Before the start of manufacture, drawings showing the general lay out of the machinery installation together with all drawing of parts subject to mandatory testing, to the extent specified in the following sections ofVolume III, are each to be submitted in triplicate to the society.
  2. The drawings must contain all the data necessary for checking thedesign, the loads and the stresses imposed. Where necessary, design calculations relating to components and descriptions of the plant are also to be supplied.
Untuk merencanakan kamar mesin seluruh kebutuhan system harus ditentukan secara detail. Di dalam pertimbangan perancangan kamar mesin bukan hanya Meminimumkan volume ruang mesin atau panjang kamar mesin namun harus di pertimbangkan pencapaian layout yang rational untuk mesin utama dan mesin bantu. Juga harus dipertimbangkan kemungkinan untuk pemasangan, pengoperasian, perawatan praktis, reparasi maupun penggantian.
1. PLATFROM
Di dalam merancang platform di dalam kamar mesin, beberapa pertimbangan perlu diambil yang antara lain adalah sebagai berikut :
  • Luas platform diusahakan sekecil mungkin, sesuai dengan kebutuhan.
  • Peralatan yang berat diusahakan tidak diletakkan di platform, agar konstruksi platform tidak menjadi terlalu berat dan titik berat kapal tidak bergeser keatas.
  • Salah satu platform kamar mesin sebaiknya dibuat sama tinggi dengan platform tertinggi mesin induk untuk memudahkan perawatan dan overhaul mesin.
  • Untuk platform yang lain harus dipertimbangkan tinggi untuk perpipaandan pengkabelan, demikian juga kemungkinan overhaul permesinan yang besar seperti diesel generator dan sebagainya. Harus diperhatikan juga bahwa clearance ( tinggi ) minimum untuk lewat adalah sekitar 2 meter.
2. PEMASANGAN POSISI MESIN INDUK
Pada kapal dengan kamar mesin di belakang, posisi mesin induk harus diusahakan sejauh mungkin kebelakang untuk memperkecil panjang kamar mesin. Hal – hal yang harus diperhatikan untuk menetapkan posisi mesin induk adalah seperti berikut :
  • Tempat untuk intermediate shaft ( poros antara ).
    Poros propeler harus dicabut dan diperiksa secara periodik, karenaitu dibelakang mesin induk harus ada tempat yang cukup untuk mencabutnya.Jarak antara ujung belakang poros engkol mesin dan ujung depan tabung poros ( stren tube ) harus lebih panjang dari panjang poros propeler. Biasanya diberikan margin sebesar 500 – 1000 mm seperti telah disebutkan dimuka.
  • Tempat untuk lewat dan perpiaan.
    Di sisi – sisi ujung belakang mesin induk harus ada tempat yang cukup untuk orang lewat maupun penempatan perpipaan di bawah floor.
  • Tempat untuk cadangan poros propeler.
    Kalau kapal membawa cadangan poros propeler, tempatnya biasanya disisi poros antara ini harus dipastikan pada saat menetapkan posisi mesin induk. Untuk menggantung poros cadangan tersebut, ruang diatasnya sekitar 2 meter harus bebas agar dapat menempatkan takal pengangkat ( chain block ). Untuk prosedur pencabutan poros propeler dan pengikatan poros cadangan, dianjurkan untuk berkonsultasi dengan perencana system poros.
  • Tempat untuk pengencangan baut pengikat.
    Disekitar baut pengikat dan baut pas mesin induk harus tersedia ruang bebas agar orang bisa mengencangkan dan memeriksa baut pengikat mesin induk dengan leluasa. Karena itu tempat diatas baut – baut tersebut juga harus bebas dari perpipaan. Biasanya sisi dalam dari blok “ B “ ( side girder ) dibawah floor juga harus bebas.
  • Tempat untuk membuka tutup poros engkol ( deksel ).
    Kedua sisi mesin induk pada ketinggian floor harus bebas dari penempatan peralatan untuk memudahkan pembukaan deksel. Biasanya tempat sekitar 600 mm di sekeliling mesin induk pada ketinggian floor dianggap cukup sekaligus untuk jalan ABK.
  • Grating mesin induk.
    Untuk memudahkan perawatan dan pengawasan grating mesin induk tidak boleh dipotong. Kalau hal itu terpaksa dilakukan, misalnya untuk memudahkan pengangkatan peralatan dari floor ke atas, sebaiknya hal itu dikonsultasikan pihak produsen mesin. Lebar Engine Casing sebaiknya cukup untuk memasukkan mesin induk lengkap dengan gratingnya.
  • Pengikatan bagian atas mesin induk.
    Untuk tipe mesin tertentu seperti Mitsuib & W l90GFCA dan L80GFCA, harus dibuat sejumlah alat pengikat. Untuk ini balok grating mesin dihubungkan dengan balok pengikat ke struktur kapal. Jumlah balok pengikat yang dibuat harus dengan persetujuan pihak produsen mesin. Karena fungsi pengikat ( top bracing ) ini untuk menghilangkan getaran, maka struktur kapal tempat pengikat ini harus betul – betul rigid. Karena itu juga sebaiknya platform kapal dibuat pada ketinggian grating mesin induk. Dalam merancang peletakan tangga, perpipaan, ducting ventilasi dll. Harus diperhatikan adanya batang – batang pengikat ini.
  • Manifold gas buang.
    Manifold gas buang mesin induk setelah turbocharger harus diikat pada struktur kapal dengan penyangga yang kuat. Penyangga ini harus begitu kuat sehingga mampu menahan getaran yang kuat serta tahan terhadap ekspansi termal akibat temperatur gas buang yang tinggi. Struktur kapal tempat penyangga ini tentu saja harus sama kuat dengan penyangganya. Untuk mengatasi tegangan akibat ekspansi termal, pada pipa gas buang harus dipasang beberapa expansion joint. Pada tahap awal perancangan, penempatan dan pengikatan pipa gas buang ini harus dirancang sebaik baiknya. Pengaturannya harus sedemikian sehingga kerugian tekanan bisa diperkecil dengan cara :
    1. Sedikit mungkin jumlah bengkokan.
    2. Radius belokan tidak lebih kecil dari diameter pipa.
    3. Total panjang pipa harus sependek mungkin.
    4. Sudut persilangan harus seruncing mungkin.
Kerugian tekanan yang di ijinkan untuk seluruh panjang pipa adalah 300 mm.

Jumat, 20 April 2012

Olah Gerak Kapal



Berlabuh jangkar dengan rantai jangkar 3 segel diair = posisi kapal berlabuh jangkar dimana segel ketiga pada rantai jangkar berada dibawah permukaan air dan jangkar dalam keadaan makan
Fungsi jangkar selain berlabuh jangkar :

  • Ø Membantu olah gerak kapal sewaktu sandar dan lepas sandar
  • Ø Untuk membantu olah gerak kapal mundur agar haluan tetap bergerak lurus
  • Ø Untuk mengurangi akibat terjadinya tubrukan
  • Ø Untuk berputar si perairan yang sempit
  • Ø Untuk mengetahui apah jangkar yang sudah diletgo makn atau tidak
Pertimbangan pertimbangan untuk berlabuh jangkar dengan baik :
  • Ø Tempat berlabuh sesuai dengan sarat kapal
  • Ø Tempat belabuh cukup untuk berputar kapal
  • Ø Tempat berlabuh jauh dari bahaya navigasi
  • Ø Transportasi lancar
  • Ø Komunikasi tidak terganggu
Hubungan antara panjang rantai jangkar yang diarea dengan dalamnya laut adalah 1 : 3 artinya, 1 meter kedalaman perairan maka rantai jangkar yang diarea 3 meter. Semakin dalam sebuah perairan, maka perbandingan rantai yang diarea semakin kecil.
Jangkar makan bila  kondisi berlabuh jangkar, dimana jangkar yang diletgo telah mengait pada dasar perairan, dan dapat menahn berat kapal beserta isinya walaupun dapat pengaruh arus dan angin
Jangkar menggaruk bila kondisi berlabuh jangkar dimana jangkar yang diletgo tidak mengait pada dasar perairan, dan tidak dapat menahan kapal beserta isinya.
Pertimbangan dalam menentukan panjang rantai jangkar yang akan digunakan untuk berlabuh, panjang rantai harus disesuaikan dengan :
  • Ø Keadaan perairan
  • Ø Jenis dasar perairan
  • Ø Lama berlabuh
  • Ø Tujuan berlabuh
  • Ø Sesuai dengan kedalaman air
Olah gerak berlabuh jangkar di perairan dangkal :
  • Ø Dekati tempat berlabuh dengan kecepatan seperlunya, usahakan melawan arus
  • Ø Setelah jarak dengan tempat berlabuh kira-kira 4-5x panjang kapal, mesin stop sehingga kapal dapat mendekati tempat berlabuh dengan sisa laju
  • Ø Setelah tiba ditempat yang tepat, untuk mengurangi sisa laju maju, mesin mudur seperlunya
  • Ø Setelah kapal mulai bergerak mudur, letgo jangkar yang berada diatas angin
  • Ø Haria rantai jangkar sesuai keperluan, dan apabila rantai jangkar dari kendor kemudian kencang dan kembali mengendor lagi pertanda jangkar telah mengait dasar laut (makan)
Faktor yang mempengaruhi olah gerak kapal :
  • Bentuk kapal : perbandingan antara panjang dan lebar kapal sangat mempengaruhi olah gerak kapal terutama untuk berputar. kapal yang pendek umumnya lebih muidah berbelok dibanding dengan kapal yang lebih panjang.
  • Jenis dan kekutan tenaga penggerak : masing masing mempunyai kelebihan dan kekurangan sendiri sendiri, akan tetapi mesin diesel sangat menguntungkan dan mempunyai kelebihan dibandingkan mesin torak dan mesin uap
  • Jumlah dan macam letak baling baling : kapal dengn baling baling ganda akan lebih mudah mengolah gerak dibanding kapal yang berbaling baling tunggal
  • Teritip : kulit kapal yang tebal teritipnya akn memperbesar tahanan akbibatnya, akn mempengaruhi kecepatn dn kemampuan olah gerak disebabkan karena semakin tebal teritip yng menempel pad kulit kapal maka semakin besar pula gaya gesekan yang timbul
  • Keadaan pemuatan : kapal yang bemuatan penuh kan lebih bik kemampuan olah geraknya, dibanding kapal kosong., karena hal ini sngat erat terhadap keberadaan trim kapal (trim by head, trim by stern)
  • Ø Kedalaman air : Faktor ini akan menimbulakan gejala penyerapan atau penghisapan bahkan kemungkina kapal sukar untuk dikemudikan
  • Ø Jarak antar kapal : Apabila jarak kapal terlalu dekat, maka dapat menimbulkan gaya penghisapan, bahkan bukan tidak mungkin terjadi apabila dua kapal sedang berlayar dengan jarak yang cukup dekat, akan terjadi tubrukan
  • Ø Ombak/gelombang: ombak dari depan, kapal akan mengangguk, ombak dari samping kapal akan oleng
  • Ø Arus : arus pada dasaranya mempengaruhi keseluruhan badan kapal, akan tetapi kapal yang sarat besar, pengaruh arusnya lebih besar dibanding dengan kapal kosong
  • Ø Angin : angin sangat berpengaruh terhadap olah gerak kapal,terutama bagi kapal, yang mempunyai lambung tinggi, ataupun kpal yang dlam keadaan kosong.
Informasi yang perlukan pandu dari nahkoda :
  • Sarat kapal
  • Panjang kapal
  • Jenis muatan
  • Arah putaran baling baling
  • Posisi telegraf
  • Pelabuhan asal/pelabuhan tujuan
  • Nama keagenan setempat
  • Nama perusahaan pelayaran
Informasi yang diperlukan nahkoda dari pandu :
  • Kondisi alur pelayaran
  • Sarana bantu navigasi perairan setempat
  • Kondisi lalu lintas
  • Tempat berlabuh
  • Tempat sandar
Aba aba kemudi
  • Kanan 5 , 10, 15, 20, 25, 30
  • Kiri 5 , 10, 15, 20, 25, 30
Aba aba telegraf mesin
  • Dead slow a head ( maju pelan sekali)
  • Dead half a head ( maju pelan)
  • Dead full a head ( maju penuh)
  • Dead slow astern ( mundur pelan)
  • Dead half astern ( mundur setengah)
  • Dead full astern ( mundur penuh)
  • Stop by enginee ( mesin stop)
  • Finish with enginee ( matikan mesin)
  • Full away
Stand by engine : kondisi dari pada mesin kapal yang siap untuk melakukan olah gerak, dimana biasanya posisi telegraf pada posisi stand by
Starboard twenty : perintah kemudi dari nahkoda/mualim jaga kepada juru mudi, untuk menyimpangkan kemudi kekanan 20 º
Single up foreward and aft : buka satu tali dari haluan dan buritan yang tujuannya untuk perhatian kepada ABK yang betugas dihaluan dan buritan bahwa kapal telah siap untuk melakukan olah gerak lepas sandar
Let go all lines : perintah untuk ABK yang bertugas di haluan dan buritan untuk melepas semua tali yang mengikat kapal di dermaga
Full away : perintah nahkoda untuk penggunaan mesin secara penuh dengan pertimbangan kapal telah melewati alur, traffic atau bahaya navigasi, sehingga kapal dianggap aman untuk menggunakan mesin secara penuh
Hard port : perintah aba aba kemudi dari nahkoda/mualim jaga untuk menyimpangkan kemudi kekiri penuh (35º)
Master command and pilot advice : keberadaan pandu diatas kapal hanya sebagai penasehat nahkoda, sedangkan tanggung jawab penuh ditangan nahkoda.
UKC = Jarak tegak kapal yang diukur dari lunas kapal sampai dasar perairan.
NUC = Kondisi daripada kapal tidak dapat dikendalikanm, diakibatkan kerusakan sehingga terganggu olah gerak
Jarak henti = jarak kapal dari maju penuh, yang diukur dari mesin stop, kemudian mesin mundur smpai kapal berhenti kecepatannya terhadap air
Kisar baling baling = selisih jarak tempuh antara putaran baling baling dengan jarak yang sebenarnya
  1. Tali tross depan : untuk merapatkan badan kapal bagian depan, dan menahan kapal agar tidak bergerak mundur.
  2. Tali melintang depan :  untuk menahan kapal bagian haluan agar tidak renggang dari dermaga
  3. Spring depan : menahan kapal agar tidak bergerak maju
  4. Spring belakang : menahan kapal agar tidak bergerak mundur
  5. Tali melintang belakang : untuk menahan buritan kapal agar tidak renggang dari dermaga
  6. Tross belakang : untuk merapatkan badan kapal bagian buritan danmenahan kapal agar tidak bergerak maju
Keuntungan baling baling ganda dibanding baling baling tunggal
  • Kapasitas kerja lebih besar
  • Kapal lebih laju
  • Mudah diolah gerak
  • Bagian poros baling baling kecil sehingga mudah untuk disimpan
  • Apabila kemudi rusak kapal masih dapat dikendalikan
Kerugian baling baling ganda dibanding baling baling tunggal
  • Biaya perawatan mahal
  • Banyak memakan ruang kamar mesin
  • Memerlukan pemeliharaan yang khusus
  • Kemungkinan terbelit tross buritan lebih besar
5 percobaan olah gerak kapal turun dari dock :
  • Ø Steering gear test
  • Ø Anchor gear test
  • Ø Zigzag manouvering test
  • Ø Chrest stopping test
  • Ø Turning circle test
Fungsi dari Lingkaran putar :
TRANSFER
HANYUT                                     PIVOTING
POINT
  • Ø Untuk berputar pada perairan yang sempit
  • Ø Untuk menghindari bahaya navigasi yang tiba tiba muncul didepan haluan
  • Ø Sebagai whell over point saat belok
  • Ø Salah satu metode olah gerak untuk menolong orang jatuh kelaut
Situasi kapal saling berhadapan pada alur pelayaran sempit



A                                                                                                              B
  • Ø Kapal  A melakukan komunikasi dengan kapal B
  • Ø Kapal A mempertahankan kecepatan untuk melewati tikungan terlebih dahulu, karena kecepatan kapal A mengikuti arus
  • Ø Kapal B, stop mesin atau berhenti dari kecepatannya untuk memberikan jalan kapal A melewati tikungan terlebih dahulu, karena kapal B melawan arus
Kapal sandar kiri



  • Ø Dekati dermaga dengan kecepatan seperlunya dan melawan arus
  • Ø Setelah tiba ditempat yang diperkirakan akan berjarak 4-5 x panjang kapal, stop dan arahkan haluan kapal membentuk sudut lancip terhadap dermaga
  • Ø Tiba diposisi 1, mesin mundur seperlunya, kemudi tengah tengah, sehingga kapal tiba diposisi 2
  • Ø Kirim tross depan kedermaga untuk mendekatkan buritan, mesin mudur seperlunya, maka kapal tiba diposisi 3
  • Ø Pada posisi 3 kirim tross buritan kedermaga, hibob secara bergantian, sehingga kapal merapat kedermaga seperti pada posisi 4



Kapal sandar kanan
  • Ø Datang dengan kecepatan secukupnya, usahakan melawan aru dan sejajar dengan dermaga
  • Ø Mesin stand by dan jangkar kiri siap di letgo
  • Ø Setelah kapal tiba pada posisi 4-5x panjang kapal jarak dengan dermaga, mesin stp
  • Ø Kapal mendekati dermaga dengan sisa laju tiba pada posisi 1, mesin mundur seperlunya, sehingga kapal tiba pada posisi 2, kirimtali tross depan kedermaga dengan tali buangan
  • Ø Sambil tross dihibob, mesin maju sepenuhnya, dengan kemudi kiri sehingga kapal mendekati dermaga
  • Ø Kirim tross belakang kedermaga pada posisi 3 dan hibob secara bergantian hingga kapal merapay didermaga seperti posisi 4
Kapal sandar kiri dengan angin dari laut
  • Ø Stand by jangkar kanan untuk diletgo
  • Ø Dekati tempat berlabuh dengan kecepatan seperlunya
  • Ø Apabila jarak kapal dengan dermaga 4-5x panjang kapal, pada posisi 2 mesin stop sehingga kapal mendekati dermaga dengan sisa laju yang ada
  • Ø Tiba pada posisi 3 berjarak 1x panjang kapal kedermaga, jangkar kanan di letgo dan atu rantai sedemikian rupa sehingga kapal mendekati dermaga dengan cukup perlahan, karena dorongan angin dari laut
  • Ø Tiba pada posisi 4 jika jarak dengan dermaga cukup dekat, kirim tross haluan kedermaga dan diikat didemaga
  • Ø Untuk memperdekat buritan kedermaga bantu dengan mesin mudur, dan setelah jarak dengan dermaga cukup dekat kirim tross buritan kedermaga
  • Ø Apabila tross buritan telah diikat, hibob secara bergantian antara tross depan dengan tross belakang, atur kekecangan rantai jangkar hingga kapal dapat merapat didermaga dengan aman
  • Ø Pada posisi 5 kirim tali tali yang lain ke dermaga untuk keamanan kapal sandar.

Faktor-Faktor Yang Mempengaruhi Olah Gerak Suatu Kapal


Kemampuan Olah Gerak kapal akan dipengaruhi oleh faktor dari DALAM dan faktor dari LUAR. Terlebih dulu di bab ini akan di uraikan tentang Faktor Luar, yang berkaitan dengan keadaan laut dan perairan dimana kapal berada, kemudian faktor dari faktor tetap dan tidak tetap.
Untuk mengetahui kemampuan olah gerak (Maneovering Ability) maka harus dipahami terlebih dahulu tentang faktor apa saja yang mempengaruhinya. Pada Maneovering Trials Suatu kapal, dibuat data – data tentang karakter olah geraknya pada macam – macam situasi pemuatannya. Misalnya pada saat kapal kosong, penuh atau sebagian terisi muatan antara lain data tentang Turning Circle, Zigzag Manoevoring, Crash Stop dll.
  • Manoeuvering Characteristic kapal, adakalanya dipasang di anjungan berbentuk gambar, sehingga memudahkan sewaktu – waktu diperlukan, misalnya oleh pandu sebelum olah geraknya maupun para perwiranya.
  • Pengaruh keadaan laut dan perairan ikut menunjang keberhasilan olah gerak, walaupun kadang – kadang diperlukan bantuan kapal pandu jika kapal sulit untuk melakukan sendiri.
  • Faktor manusia, olah gerak sangat menarik untuk di pelajari, oleh karena itu pengaruh manusia sangan menunjang.
Dalam hal ini olah gerak memerlukan pengalaman dan pengetahuan teori yang memadai. Seperti banyak terjadi pada beberapa kecelakaan kapal yang terjadi, banyak di sebabkan oleh faktor Cuaca dan Peralatan yang kurang memadai serta manusianya.
FAKTOR YANG MEMPENGARUHI
  1. Faktor dari Luar : Disini dimaksudkan sebagai faktor yang datangnya dari luar kapal, mencangkup dua hal penting yaitu keadaan laut dan keadaan perairan. Hal ini perlu dipehami mengingat keterbatasan kemampuan kapal menghadapi cuaca dan perairan maupun laut yang berbeda – beda, serta gerakan kapal di air juga memerlukan ruang gerak yang cukup.
  • Keadaan Laut .
Pengaruh Angin : Angin sangat mempengaruhi olah gerak, terutama di tempat – tempat yang sempit dan sulit dalam keadaan kapal yang kosong, walauoun pada situasi tertentu angin dapat di pergunakan untuk mempercepat olah gerak kapal.
  • Pengaruh Laut .
Dibedakan menjadi 3 yaitu, Jika kapal mendapat ombak :
1). Dari Depan, 2). Dari Belakang, 3). Dari Bawah.
1). OMBAH DARI DEPAN
Karena satabilitas kapal mengasilkan GML yang cukup besar, maka pada waktu mengangguk, umumnya kapal cenderung mengangguk lebih cepat dari pada periode mengoleng. Bila ombak dari depan dan kapal mempunyai kecepatan konstan maka T kapal lebih besar T ombak.
2). OMBAK DARI BELAKANG
kapal menjadi sulit dikemudikan, haluan merewang bagi kapal yang dilengkapi kemudi Otomatis, penyimpangan kemudi yang besar dapat merusak sistemnya. Dan kemudi rusak atas hantaman ombak.
3). OMBAK DARI BAWAH
kapal akan mengoleng, pada kemiringan kapal yang besar dapat membahayakan stabilitas kapal. Olengan ini makin membesar, jika terjadi Sinkronisasi antara periode olengan kapal dengan periode olengan semu, kemungkinan kapal terbalik dan tenggelam.
PERIODE OLENGAN KAPAL adalah lamanya olengan yang dijalani kapal, dihitung dari posisi tegak, olengan terbesar kiri / kanan , kembali tegak, olengan terbesar di sisi kanan / kiri dan kembali keposisi tegak.
PERIODE GELOMBANG SEMU adalah waktu yang diperlukan untuk menjalani satu kali panjang gelombang, dari puncak gelombang ke puncak gelombang berikut.
Pada kapal berlayardalam ombak, sebaiknya kecepatan kapal dikurangi, haluan dibuat sedemikian rupa sehingga ombak datang dari arah diantara haluan dan arah melintang kapal. Secara khusus olah gerak kapal menghadapi Cuaca buruk.
  • Pengaruh Arus .
Arus adalah gerakan air dengan arah dan kecepatan tertentu, menuju kesuatau tempat tertentu pula. Dikenal arus tetap dan arus tidak tetap, arah arus ditentukan “KE” dan angin “DARI” misalnya arus Timur bebrarti arus “ke” Timur.
Rimban yang disebabkan oleh arus tergantung dari arah dan kekuatan arus dengan arah dan kecepatan kapal. Semua benda yang terapung dipermukaan arus dan didalmnya, praktis akan bergerak dengan arah dan kekuatan arus tersebut.
Diperairan bebas umumnya arus akan menghanyutkan kapal, sedangkan diperairan sempit atau tempat – tempat tertentu arus akan memutar kapal. Pengaruh arus terhadap olah gerak kapal sama sedangan pengaruh angin.
  • Keadaan Perairan .
Pengaruh perairan dangkal dan sempit :
Pengertian dangkal dan sempit disini sangat relatif sifatnya, tergantung dalam dan lebarnya perairan dengan sarat dan lebar kapal itu.
Pada perairan sempit, jika lunas kapal berada terlalu dekat dengan dasar perairan maka akan terjadi ombak haluan / buritan serta penurunan permukaan air diantara haluan dan buritan di sisi kiri / kanan kapal serta arus bolak – balik. Hal ini disebabkan karena pada waktu baling – baling bawah bergerak ke atas terjadi pengisapan air yang membuat lunas kapal mendekati dasar perairan, terutama jika kapal berlayar dengan kecepatan tinggi, maka kapal akan terasa menyentak – nyentak dan dapat menyebabkan kemungkinan menyentuh dasar perairan. Gejala penurunan tekanan antara dasar laut dengan lunas kapal berbanding terbalik dengan dengan kwadrat kecepatannya.